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ABSTRACT
We propose a deconvolution algorithm for images blurred

and degraded by a Poisson noise. The algorithm uses a fast

proximal backward-forward splitting iteration. This iter-

ation minimizes an energy which combines a non-linear
data fidelity term, adapted to Poisson noise, and a non-

smooth sparsity-promoting regularization (e.g �1-norm)

over the image representation coefficients in some dictio-

nary of transforms (e.g. wavelets, curvelets). Our results

on simulated microscopy images of neurons and cells are

confronted to some state-of-the-art algorithms. They show

that our approach is very competitive, and as expected,

the importance of the non-linearity due to Poisson noise

is more salient at low and medium intensities. Finally an

experiment on real fluorescent confocal microscopy data

is reported.

Index Terms— Deconvolution, Poisson noise, Confo-

cal microscopy, Iterative thresholding, Sparse representa-

tions.

1. INTRODUCTION
Fluorescent microscopy suffers from two main sources of

degradation: the optical system and the acquisition noise.

The optical system has a finite resolution introducing a

blur in the observation. This degradation is modeled as

convolution with the point spread function (PSF). The sec-

ond source of image degradation is due to Poisson count

process (shot noise). In presence of Poisson noise, sev-

eral deconvolution algorithms have been proposed such

as the well-known Richardson-Lucy (RL) algorithm or

Tikhonov-Miller inverse filter, to name a few. RL is ex-

tensively used for its good adaptation to Poisson noise,

but it tends to amplify noise after a few iterations. Reg-

ularization can be introduced in order to avoid this issue.

In biological imaging deconvolution, many kinds of reg-

ularization have been suggested: total variation with RL

[1] which gives staircase artifacts, Tikhonov with RL (see

[2] for a review), etc. Wavelets have also been used as a

regularization scheme when deconvolving biomedical im-

ages; [3] presents a version of RL combined with wavelets

denoising, and [4] use the thresholded Landweber itera-

tion of [5]. The latter approach implicitly assumes that the

contaminating noise is Gaussian.

In the context of deconvolution with Gaussian white

noise, sparsity-promoting regularization over orthogonal

wavelet coefficients has been recently proposed [5, 6].

Generalization to frames was proposed in [7, 8]. In [9],

the authors presented an image deconvolution algorithm

by iterative thresholding in an overcomplete dictionary

of transforms. However, all sparsity-based approaches

published so far have mainly focused on Gaussian noise.

In this paper, we propose an image deconvolution al-

gorithm for data blurred and contaminated by Poisson

noise. The Poisson noise is handled properly by using the

Anscombe variance stabilizing transform (VST), leading

to a non-linear degradation equation with additive Gaus-

sian noise, see (2). The deconvolution problem is then

formulated as the minimization of a convex functional

with a non-linear data-fidelity term reflecting the noise

properties, and a non-smooth sparsity-promoting penalty

over representation coefficients of the image to restore,

e.g. wavelet or curvelet coefficients. Inspired by the work

in [6], a fast proximal iterative algorithm is proposed to

solve the minimization problem. Experimental results are

carried out to compare our approach on a set of simu-

lated and real confocal microscopy images, and show the

striking benefits gained from taking into account the Pois-

son nature of the noise and the morphological structures

involved in the image.

Notation
Let H a real Hilbert space, here a finite dimensional vector subspace of

R
n. We denote by ‖.‖2 the norm associated with the inner product inH,

and I is the identity operator on H. x and α are respectively reordered

vectors of image samples and transform coefficients. A function f is co-

ercive, if lim‖x‖2→+∞ f (x) = +∞. Γ0(H) is the class of all proper

lower semi-continuous convex functions fromH to ]−∞,+∞].

2. PROBLEM STATEMENT
Consider the image formation model where an input image

x is blurred by a point spread function (PSF) h and con-

taminated by Poisson noise. The observed image is then a

discrete collection of counts y = (yi)1�i�n where n is the

number of pixels. Each count yi is a realization of an in-

dependent Poisson random variable with a mean (h � x)i,

where � is the circular convolution operator. Formally,

this writes yi ∼ P ((h � x)i).
A naive solution to this deconvolution problem would

be to apply traditional approaches designed for Gaussian

noise. But this would be awkward as (i) the noise tends

to Gaussian only for large mean (h � x)i (central limit
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theorem), and (ii) the noise variance depends on the mean

anyway. A more adapted way would be to adopt a bayesian

framework with an appropriate anti-log-likelihood score

reflecting the Poisson statistics of the noise. Unfortunately,

doing so, we would end-up with a functional which does

not satisfy some key properties (the Lipschitzian prop-

erty stated after (3)), hence preventing us from using the

backward-forward splitting proximal algorithm to solve

the optimization problem. To circumvent this difficulty,

we propose to handle the noise statistical properties by

using the Anscombe VST defined as

zi = 2
√

yi + 3
8 , 1 � i � n. (1)

Some previous authors [10] have already suggested to use

the Anscombe VST, and then deconvolve with wavelet-

domain regularization as if the stabilized observation zi

were linearly degraded by h and contaminated by additive

Gaussian noise. But this is not valid as standard asymp-

totic results of the Anscombe VST state that

zi = 2
√

(h � x)i + 3
8 + ε, ε ∼ N (0, 1) (2)

where ε is an additive white Gaussian noise of unit vari-

ance1. In words, z is non-linearly related to x. In Sec-

tion 4, we provide an elegant optimization problem and

a fixed point algorithm taking into account such a non-

linearity.

3. SPARSE IMAGE REPRESENTATION

Let x ∈ H be an
√

n × √
n image. x can be written as

the superposition of elementary atoms ϕγ parametrized

by γ ∈ I such that x =
∑

γ∈I αγϕγ = Φα, |I| =
L, L � n. We denote by Φ the dictionary i.e. the n ×
L matrix whose columns are the generating waveforms

(ϕγ)γ∈I all normalized to a unit �2-norm. The forward

transform is then defined by a non-necessarily square ma-

trix T = ΦT ∈ R
L×n. In the rest of the paper, Φ will be

an orthobasis or a tight frame with constant A.

4. SPARSE ITERATIVE DECONVOLUTION

4.1. Optimization problem
The class of minimization problems we are interested in

can be stated in the general form [6]:

arg min
x∈H

f1(x) + f2(x). (3)

where f1 ∈ Γ0(H), f2 ∈ Γ0(H) and f1 is differentiable

with κ-Lipschitz gradient. We denote by M the set of

solutions.

From (2), we immediately deduce the data fidelity term

F ◦ H ◦ Φ (α), with (4)

F : η �→
n∑

i=1

f(ηi), f(ηi) =
1
2

(
zi − 2

√
ηi + 3

8

)2

,

1Rigorously speaking, the equation is to be understood in an asymp-

totic sense.

where H denotes the convolution operator. From a statisti-

cal perspective, (4) corresponds to the anti-log-likelihood

score.

Adopting a bayesian framework and using a standard

maximum a posteriori (MAP) rule, our goal is to minimize

the following functional with respect to the representation

coefficients α:

(Pλ,ψ) : arg min
α

J(α) (5)

J : α �→ F ◦ H ◦ Φ (α)︸ ︷︷ ︸
f1(α)

+ ıC ◦ Φ (α) + λ
L∑

i=1

ψ(αi)︸ ︷︷ ︸
f2(α)

,

where we implicitly assumed that (αi)1�i�L are indepen-

dent and identically distributed. The penalty function ψ
is chosen to enforce sparsity, λ > 0 is a regularization

parameter and ıC is the indicator function of a convex set

C. In our case, C is the positive orthant. We remind that

the positivity constraint is because we are fitting Poisson

intensities, which are positive by nature.

4.2. Proximal iteration
We now present our main proximal iterative algorithm to

solve the minimization problem (Pλ,ψ):

Theorem 1. (Pλ,ψ) has at least one solution (M �= ∅).
The solution is unique if ψ is strictly convex or if Φ is a
orthobasis and Ker(H) = ∅. For t � 0, let (μt)t be such

that 0 < inft μt � supt μt <
(

3
2

)3/2
/
(
2A ‖H‖2

2 ‖z‖∞
)

.
Fix α0 ∈ C ◦ Φ, for every t � 0, set

αt+1 = proxμtf2
(αt − μt∇f1(αt)) , (6)

where ∇f1 is the gradient of f1 and proxμtf2
is computed

using the following iteration: let
∑

t νt(1 − νt) = +∞,
take γ0 ∈ H, and define the sequence of iterates:

γt+1 = γt + νt

(
rprox

μtλΨ+
1
2‖.−α‖2 ◦ rproxıC′ −I

)
(γt), (7)

where prox
μtλΨ+

1
2‖.−α‖2(γ

t) =
(

prox
μt

λ
2 ψ

((αi + γt
i )/2)

)
1�i�L

,

PC′ = proxıC′ = A−1ΦT ◦ PC ◦ Φ +
(
I − A−1ΦT ◦ Φ

)
,

rproxϕ = 2proxϕ −I and PC is the projector onto the
positive orthant (PCη)i = max(ηi, 0). Then,

γt ⇀ γ and proxμtf2
(α) = PC′(γ). (8)

Then (αt)t�0 converges (weakly) to a solution of (Pλ,ψ).

A proof can be found in [11]. proxδψ is given by,

Theorem 2. Suppose that (i) ψ is convex even-symmetric ,
non-negative and non-decreasing on [0, +∞), and ψ(0) =
0. (ii) ψ is twice differentiable on R \ {0}. (iii) ψ is con-
tinuous on R, it is not necessarily smooth at zero and ad-
mits a positive right derivative at zero ψ

′
+(0) > 0. Then,
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the proximity operator proxδψ(β) = α̂(β) has exactly one
continuous solution decoupled in each coordinate βi :

α̂i(βi) =

{
0 if |βi| ≤ δψ

′
+(0)

βi − δψ
′
(α̂i) if |βi| > δψ

′
+(0)

(9)

See [9]. Among the most popular penalty functions

ψ satisfying the above requirements, we have ψ(αi) =
|αi|, in which case the associated proximity operator is

soft-thresholding. Therefore, (6) is essentially an iterative

thresholding algorithm with a positivity constraint.

5. RESULTS
The performance of our approach has been assessed on

several datasets of biological images: a neuron phantom

and a cell. Our algorithm was compared to RL with

total variation regularization (RL-TV [1]), RL with multi-

resolution support wavelet regularization (RL-MRS [12]),

the naive proximal method that would assume the noise

to be Gaussian (NaiveGauss [4]), and the approach of

[10] (AnsGauss). For all results presented, each algorithm

was run with 200 iterations, enough to reach convergence.

Simulations were carried out with an approximated but re-

alistic PSF [13] whose parameters are obtained from a real

confocal microscope. As usual, the choice of λ is crucial

to balance between regularization and deconvolution. For

all the situations below, λ was adjusted in order to reach

the best compromise.

In Fig.1(a), a phantom of a neuron with a mushroom-

shaped spine is depicted. The maximum intensity is 30. Its

blurred and blurred+noisy versions are in (b) and (c). With

this neuron, and for NaiveGauss, AnsGauss and our ap-

proach, the dictionary Φ contained the wavelet orthogonal

basis. The deconvolution results are shown in Fig.1(d)-

(h). As expected the worst results are for the AnsGauss

and the NaiveGauss versions, as they don’t fit the acquisi-

tion process at this intensity regime. RL-TV shows rather

good results but the background is full of artifacts. Our

approach provides a visually pleasant deconvolution result

on this example. It efficiently restores the spine, although

the background is not fully cleaned. RL-MRS also exhibits

good deconvolution results. Qualitative visual results are

confirmed by quantitative measures of the quality of de-

convolution, where we used both the �1-error (adapted to

Poisson noise), and the traditional MSE criteria. The �1-

errors for this image are shown by Tab. 1 (similar results

were obtained for the MSE). In general, our approach per-

forms well. It is competitive compared to RL-MRS which

is designed to directly handle Poisson noise. At low in-

tensity regimes, our approach and RL-MRS are the two

algorithms that give the best results. At high intensity,

RL-TV performs very well, although RL-MRS and our ap-

proach are very close to it. NaiveGauss performs poorly as

it does not correspond to a degradation model with Pois-

son noise. AnsGauss gives the worst results probably be-

cause it does not handle the non-linearity of the degrada-

tion model (2) after the VST. To assess the computational

burden of the compared algorithms, Tab. 2 summarizes the

execution times with an Intel PC Core 2 Duo 2GHz, 2Gb

RAM. Except RL-MRS which is written in C++, all other

algorithms were implemented in MATLAB.

The same experiment as above was carried out with a

microscopy image of the endothelial cell of the blood mi-

crovessel walls; see Fig. 2. For the NaiveGauss, AnsGauss

and our approach, the dictionary Φ contained the wavelet

orthogonal basis and the curvelet tight frame. The Ans-

Gauss and the NaiveGauss results are spoiled by artifacts

and suffer from a loss of photometry. RL-TV result shows

a good restoration of small isolated details but with a dom-

inating staircase-like artifacts. RL-MRS and our approach

give very similar results although an extra-effort could be

made to better restore tiny details. The quantitative mea-

sures depicted in Fig. 3 confirm this qualitative discussion.

Finally, we applied our algorithm on a real confocal

microscopy image of neurons. Fig. 4(a) depicts the ob-

served image2 using the GFP fluorescent protein. Fig. 4(b)

shows the restored image using our algorithm with the or-

thogonal wavelets. The images are shown in log-scale for

visual purposes. We can notice that the background has

been cleaned and some structures have reappeared. The

spines are well restored and part of the dendritic tree is re-

constructed, however some information can be lost (see

tiny holes). This can be improved using more relevant

transforms.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 1. Deconvolution of a simulated neuron (Intensity � 30). (a)

Original, (b) Blurred, (c) Blurred&noisy, (d) RL-TV, (e) NaiveGauss, (f)

AnsGauss, (g) RL-MRS, (h) Our Algorithm.

6. CONCLUSION
In this paper, we presented a sparsity-based fast iterative

thresholding deconvolution algorithm that take accounts of

the presence of Poisson noise. Competitive results on con-

focal microscopy images with state-of-the-art algorithms

2Courtesy of the GIP Cycéron, Caen France.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 2. Deconvolution of the cell image (Intensity � 30). (a) Origi-

nal, (b) Blurred, (c) Blurred&noisy, (d) RL-TV, (e) NaiveGauss, (f) Ans-

Gauss, (g) RL-MRS, (h) Our Algorithm.

50 100 150 200 250

10−1

100

101

Intensity

l 1−
er

ro
r

Our method
NaiveGauss
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RL−MRS
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Fig. 3. Mean �1-error of all algorithms as a function of the intensity

level for the deconvolution of the cell

are shown. The combination of several transforms leads to

some advantages, as we can easily adapt the dictionary to

the kind of image to restore. The parameter λ can be tricky

to find, and we are developing a method helping to solve

this issue.
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